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Spectral Theory of Perturbative Decays

D. Cocolicchio1,2 and M. Viggiano1
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We propose a complex approach to evaluating a function sum of two
noncommuting non-Hermitian operators. We propose an explicit expansion of
the evolution operator in the case of the neutral K-meson system influenced by
an external interaction. The importance is pointed out of considering the algebraic
expansion of the time evolution operator whenever the dynamics decouples the
internal transitions and center-of-mass motion.

1. INTRODUCTION

The temporal evolution of metastable systems is governed by a non-

Hermitian Hamiltonian with nonorthogonal eigenvectors corresponding to

complex eigenvalues. The problem of determining an elegant and compact

form for the evolution operator

8(t) 5 exp[ 2 i*t], where * 5 *0 1 9 (1)

is connected with the more general issue of expressing explicitly an arbitrary

function of the sum of two noncommuting matrix operators. One of the most

tantalizing methods for evaluating this matrix function involves the subtleties
of complex analysis and has already been developed in the particular case

of Hermitian operators (Moretti and Mancini, 1984). The purpose of this

paper is to extend this method to non-Hermitian operators. The starting point

is the generalized Cauchy formula (Merzbacher, 1968)

f(A) 5
1

2 p i # g

f(z)&(z) dz (2)

Here the integral is extended over a contour g in the complex z plane
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which encloses all eigenvalues of A. It is then possible to obtain an integral

expression of f (A) in terms of the well-known resolvent operator

&A(z) 5 (z( 2 A) 2 1 (3)

If A and B are two non-Hermitian and noncommuting operators, the resolvent

operators of A and of the sum A 1 B are given, respectively, by

&A(z) 5 (z( 2 A) 2 1, &(z) 5 [z( 2 (A 1 B)] 2 1 (4)

In the convergence region of the geometric series

1 1 2
B

z( 2 A 2
2 1

5 o
`

n 5 0 1 B

z( 2 A 2
n

(5)

the following expansion for &(z) holds:

& (z) 5
1

z( 2 A

1

[z( 2 (A 1 B)]/(z( 2 A)

5
1

z( 2 A o
`

n 5 0 1 B

z( 2 A 2
n

5 o
`

n 5 0

&A(B&A)n 5 o
`

n 5 0

(&AB)n&A (6)

which will be useful later. The right and left eigenvectors of the operator A
are defined by the relations

A | F i & 5 l i | F i & , ^ C i | A 5 l i ^ C i | (7)

Contrary to the case where A is Hermitian, the sets { | F i & } and { ^ C i | }, although

complete, are not orthogonal, and | C i & Þ | F i & . However, the relation

^ C i | F j & 5 ^ C i | F i & d ij (8)

holds, and therefore it is possible to generalize the completeness relation

using the following decomposition of unity:

( 5 o
i

| F i & ^ C i |
^ C i | F i &

(9)

We propose to give a spectral expansion of the function f (A 1 B) in terms
of the respective eigenvalues of A and B. If G is a closed contour enclosing

the whole spectrum of the operator A 1 B, then we have

f (A 1 B) 5
1

2 p i # G

f (z)&(z) dz (10)
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and from equation (6)

f (A 1 B) 5
1

2 p i o
`

n 5 0 # G

f (z)[(&AB)n&A] dz (11)

The matrix elements will be obtained by

^ C 1 | f (A 1 B) | F 2 &

5
1

2 p i # G

dz f (z) o
`

n 5 0
^ C 1 | (&AB)n&A | F 2 &

5
1

2 p i o
`

n 5 0 # G

dz f (z)

3 H o
i1,i2,..., in

^ C 1 | &AB
| F i1 & ^ C i1 |

^ C i1 | F i1 &
&AB

| F i2 & ^ C i2 |

^ C i2 | F i2 &
? ? ?

| F in & ^ C in |

^ C in | F in &
&A | F 2 & J

5 o
`

n 5 0
o

{i,n}

^ C 1 | B
| F i1 & ^ C i1 |

^ C i1 | F i1 &
B

| F i2 & ^ C i2 |

^ C i2 | F i2 &
? ? ?

| F in 2 1 & ^ C in 2 1 |

^ C in 2 1 | F in 2 1 &
B | F 2 &

3
1

2 p i # G

dz f (z)[(z 2 l 1)
2 1 (z 2 l i1)

2 1 . . . (z 2 l in 2 1)
2 1 (z 2 l 2)

2 1]

(12)

where we have used the relation (9) and we have defined {i, n} [ {i1, i2,
. . . , in 2 1}. The indices ik run through the whole set of the eigenvectors as

usual, whereas ^ C 1 | and | F 2 & are fixed. If we introduce the function

F(z) 5 f(z)[(z 2 l 1)(z 2 l i1) . . . (z 2 l in 2 1)(z 2 l 2)]
2 1 (13)

we can write

^ C 1 | f(A 1 B) | F 2 &

5 o
`

n 5 0
o

{i,n}

^ C 1 | B
| F i1 & ^ C i1 |

^ C i1 | F i1 &
B

| F i2 & ^ C i2 |

^ C i2 | F i2 &

3 ? ? ?
| F in 2 1 & ^ C in 2 1 |

^ C in 2 1 | F in 2 1 &
B | F 2 &

1

2 p i # G

dz F(z) (14)

which generalizes the result of Moretti and Mancini (1984). Supposing that

the eigenvalues of A are enclosed within G , i.e., all the singularities of the

function F(z) are inside the integral contour, it is then possible to apply the
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theorem of residues. If we denote 5( l i) as the residue of F(z) at the pole

z 5 l i, the matrix elements in (14) can be rewritten as

^ C 1 | f (A 1 B) | F 2 & 5 o
`

n 5 0
o

{i,n}

^ C 1 | B
| F i1 & ^ C i1 |

^ C i1 | F i1 &
B

| F i2 & ^ C i2 |

^ C i2 | F i2 &

3 ? ? ?
| F in 2 1 & ^ C in 2 1 |

^ C in 2 1 | F in 2 1 &
B | F 2 &

3 F 5( l 1) 1 o
n 2 1

n 5 1

5( l i n 1 5( l 2) G (15)

If some eigenvalues are degenerate, the general expression of F(z) is

F(z) 5 f(z)[(z 2 l 1)
m1(z 2 l i1)

mi1 . . . (z 2 l in 2 1)
min 2 1(z 2 l 2)

m2] 2 1 (16)

where every exponent mi is the degeneracy order of the respective eigenvalues

l i. Finally we want to stress that the set {mi} (i P {1, . . . , n 2 1}) depends
on the particular {i, n} selected. It is worth noting that these results recover

the formulas already present in literature in the limiting case of Hermitian

matrices, and they result in a generally more straightforward way than the

usual algebraic methods (Friedrichs, 1973; Kato, 1976). The use of these

results can be illustrated in the practical example of the evolution operator.

2. THE EVOLUTION OPERATOR OF THE NEUTRAL KAON
SYSTEM

The previous results let us take a decisive step toward a complete

understanding of the controversial results about the dynamical behavior of
a decaying system described by the vector state | C (t) & . Its time evolution

can be written by means of an operator 8:

| C (t) & 5 8(t) | C (0) & (17)

which can be expressed in the well-known exponential form (using units

" 5 1)

8(t) 5 exp[ 2 i*t] (18)

Although the Hamiltonian of a sensible quantum system is expected to be a

Hermitian operator, under suitable conditions we may recover the time evolu-

tion according to an effective non-Hermitian Hamiltonian as in the case of

metastable states. A celebrated example where this description has proved
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extremely useful is the two-state kaon complex. If this system is influenced

by an external interaction, the Hamiltonian operator can be written as

* 5 *0 1 9 (19)

where *0 and the perturbation 9 are, in general, two non-Hermitian and

noncommuting operators. Thus, we can apply the formulas of the previous

section to expand 8(t) in terms of the eigenfunctions | KS & , | KL & of *0

*0 | KS & 5 l S | KS & , *0 | KL & 5 l L | KL & (20)

where | KS & and | KL & are the right eigenvectors. The same matrix operator

*0 also has two left eigenvectors with the same eigenvalues

^ K8S | *0 5 l S ^ K8S | , ^ K8L | *0 5 l L ^ K8L | (21)

The set { | K8S & , | K8L & } is the reciprocal set of { | KS & , | KL & } in the sense that

^ K8S | KL & 5 0 5 ^ K8L | KS & (22)

If we normalize all the eigenvectors to 1 and denote the overlap as

x 5 ^ KL | KS & (23)

then

| K8S & 5
1

! 1 2 | x | 2
( | KS & 2 x | KL & ) (24)

| K8L & 5
1

! 1 2 | x | 2
( | KL & 2 x * | KS & )

where

^ K8S | KS & 5 ! 1 2 | x | 2 5 ^ K8L | KL & (25)

and

^ K8L | K8S & 5 2 x (26)

Therefore, we have the following equivalent decomposition of unity:

( 5 | KS & ^ KS | 1 | K8L & ^ K8L |

5 | KL & ^ KL | 1 | K8S & ^ K8S |

5
1

! 1 2 | x | 2
( | KS & ^ K8S | 1 | KL & ^ K8L | )

5
1

! 1 2 | x | 2
( | K8S & ^ KS | 1 | K8L & ^ KL | ) (27)
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In the particular case of the evolution operator, the generalized Cauchy

formula is written in the form

8(t) 5
1

2 p i # G

e 2 izt&(z) dz (28)

where the resolvent operator is

&(z) 5
1

z( 2 *
5

1

z( 2 [*0 1 9]
(29)

and G is a closed curve encircling all the complex eigenvalues of the total

Hamiltonian *. If

&0(z) 5
1

z( 2 *0

(30)

is the resolvent operator of *0, an analogous expansion to equation (6) for

&(z) holds by substituting *0 and 9 for the operators A and B, respectively.

Now, the matrix elements will be obtained by

U a b 5 ^ K8a | exp[ 2 i*t] | K b & (31)

where the Greek letters a and b are fixed and a , b P {S, L}. From equation

(12) we have

^ K8a | exp[ 2 i*t] | K b &

5 o
`

n 5 0
o

{ m ,n}

^ K8a | 9
| K m 1 & ^ K8m 1 |

^ K8m 1 | K m 1 &
9

| K m 2 & ^ K8m 2 |

^ K8m 2 | K m 2 &
? ? ?

| K m n 2 1 & ^ K8m n 2 1 |

^ K8m n 2 1 | K m n 2 1 &
9 | K b &

3
1

2 p i # G

dz e 2 izt[(z 2 l a ) 2 1(z 2 l m 1)
2 1 . . . (z 2 l m n 2 1)

2 1(z 2 l b ) 2 1]

5 o
`

n 5 0
o

{ m ,n}

^ K8a | 9
| K m 1 & ^ K8m 1 |

^ K8m 1 | K m 1 &
9

| K m 2 & ^ K8m 2 |

^ K8m 2 | K m 2 &
? ? ?

| K m n 2 1 & ^ K8m n 2 1 |

^ K8m n 2 1 | K m n 2 1 &
9 | K b &

3 F 5( l a ) 1 o
n 2 1

v 5 1
5( l m n ) 1 5( l b ) G (32)

Here { m , n} [ { m 1, m 2, . . . , m n 2 1} and the indices m k vary in the set
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{S, L}. We can give a more explicit expression to the quantity ^ K8a | exp[ 2
i*t] | K b & with the use of formulas (23)±(25)

U a b 5 ^ K8a | exp[ 2 i*t] | K b &

5 o
`

n 5 0

1

[ ! 1 2 | x | 2](n 2 1) ^ K8a | 9[ | KS & ^ K8S | 1 | KL & ^ K8L | ] 9

3 [ | KS & ^ K8S | 1 | KL & ^ K8L | ] . . . [ | KS & ^ K8S | 1 | KL & ^ K8L | ] 9 | K b &

3 [5( l a ) 1 o
n 2 1

n 5 1

5( l m n ) 1 5( l b )] (33)

Since l a , l b , and l m n ( n P {1, 2, . . . , n 2 1}) are equal to l S or l L, equation
(33) will therefore be rewritten as

U a b 5 o
`

n 5 0

1

[ ! 1 2 | x | 2](n 2 1) ^ K8a | 9[ | KS & ^ K8S | 1 | KL & ^ K8L | ] 9

3 [ | KS & ^ K8S | 1 | KL & ^ K8L | ] . . . [ | KS & ^ K8S | 1 | KL & ^ K8L | ]

3 9 | K b & [5( l S) 1 5( l L)] (34)

where 5( l i) is the residue at z 5 l i, l i P { l S, l L}, of the function

F(z) 5 e 2 izt[(z 2 l S)
r(z 2 l L)s] 2 1 (35)

and r and s are positive integer numbers subject to the condition r 1 s 5
n 1 1. In a general theory

l S,L 5
tr *0 7 ! [tr *0]

2 2 4 det *0

2
(36)

so l S Þ l L and all eigenvalues are not degenerate. In this way if n . 2, l S

and l L are not simple poles for F(z) and a direct calculation of residues gives

5( l S) 5
1

(r 2 1)!

dr 2 1

dzr 2 1 [e 2 izt(z 2 l S)
2 s] ) z 5 l S (37)

and

5( l L) 5
1

(s 2 1)!

ds 2 1

dzs 2 1 [e 2 izt(z 2 l L) 2 r] ) z 5 l L (38)
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We illustrate the use of these formulas to calculate the second-order term in

the expansion in the particular case a 5 S and b 5 L. We have

U
(2)
S,L 5

1

! 1 2 | x | 2 F ^ K8S | 9 | KS & ^ K8S | 9 | KL & [5(2)( l S) 1 5(1)( l L)]

1 ^ K8S | 9 | KL & ^ K8L | 9 | KL & [5(1)( l S) 1 5(2)( l L)] G
5

1

! 1 2 | x | 2
^ K8S | 9 | KS & ^ K8S | 9 | KL & F e 2 i l St[( l L 2 l S) 2 1 1 ( l L 2 l S)

2 2]

1 e 2 i l L t( l L 2 l S) 2 2 G
1

1

! 1 2 | x | 2
^ K8S | 9 | KL & ^ K8L | 9 | KL & F e 2 i l Lt[( l S 2 l L) 2 1 1 ( l S 2 l L) 2 2]

1 e 2 i l St( l S 2 l L) 2 2 G (39)

Here we have labeled 5( l i) with the subscripts (1) and (2) to stress that l i

is a first- or a second-order pole. Obviously, the presence of higher order
terms involves higher order poles, but in the case of the neutral K-meson

system, the expression of U a b is not so cumbersome as in the general case.

In view of this consideration, this perturbative approach is extremely useful

in the description of evolution of the two-state kaon complex (Cocolicchio

and Viggiano, 1997). But, as mentioned in Moretti and Mancini (1984), the

use of the complex analysis is more convenient and it can be successfully
applied also when the usual time-dependent perturbation theory fails.

3. CONCLUDING REMARKS

Outside the realm of particle physics, there are many other cases of

unstable systems influenced by external interactions where the previous

approach becomes indispensable. For example, in modern quantum optics,

it seems particularly important to analyze the (para)magnetic resonance (Raby

et al., 1954; Feynman et al., 1957) and in general to describe the two states
(spin up, spin down) involving electrons and protons with dissipation. It

provides the theoretical framework to study a multitude of effects involving

laser dynamics. Nevertheless, unstable two-level systems in interaction with

other degrees of freedom require the strategy outlined before. The system is
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in fact an open system and its dynamical behavior under the influence of an

external interaction can be described only by redefining the evolution operator

2(t)8(t)2 2 1 (0) 5 8Ä (t) 5 exp[ 2 it*Ä / " ] 5 eA 1 B (40)

The transformation 2(t) decouples the internal degrees of freedom from the
motion of the center of mass and provides a time-independent Hamiltonian

*Ä 5 2*2 2 1 2 i " 22Ç 2 1. The operators A and B are introduced to clarify the

mathematical structure of the calculation below. The new time evolution

operator 8Ä (t) is then determined by the exponential factorization of two

noncommuting (sometimes non-Hermit ian) operators. The importance of the

method outlined above is evident now and turns out to be particularly compel-
ling as far as the physical interpretation is concerned. It is worth discussing

in connection with the algebraic approach. This method makes use of the

parametric differentiation of the exponential of an operator and of the commu-

tation relations in the context of the Baker±Campbell±Hausdorff (BCH) for-

mula (Wilcox, 1967; Lutzky, 1968; Oteo, 1991). Then we can think of

separating the center-of-mass A part of the evolution by factorizing 8Ä (t)
according to

8Ä (t) 5 eAW(t) (41)

Thus the complete time evolution of the two-level system is then based on

the remaining determination of the operator W(t) which contains the influence

of the external interactions on the internal dynamics. At this point, to work

out W(t) of equation (41) we consider the operator

&( l ) 5 exp[ l (A 1 B)] 5 e l AW( l ) (42)

and restrict consideration to l 5 1 at the end. Differentiation of equation
(42) with respect to l leads to the differential equation

dW

d l
5 (e 2 l AB e l A)W( l ) . (B 2 l [A, B])W( l ) (43)

with the initial condition W( l 5 0) 5 1 and using the identity

e 2 l A B e l A 5 o
`

n 5 0

l n

n!
Kn, K0 5 B, Kn 1 1 5 [Kn, A] (44)

which holds for any two operators A, B. Under general assumptions, it may

be written as a matrix equation of the form

1 dW11/d l dW12/d l
dW21/d l dW22/d l 2
5 1 P 2 l [Q, P] R

R 2 P 1 l [Q, P] 2 1 W11 W12

W21 W22 2 (45)
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This result assumes that the factorization is able to select the nonvanishing

commutator [A, B] 5 [Q, P], which is, however, a c-number, whereas R is

the remaining part in B. An example is

A 5 Q1

B 5 P s 3 1 R s 1 (46)

Equation (45) is an operator-valued system of differential equations, but it

contains only commuting operators, so that we can treat it as an ordinary

differential equation with the initial condition Wij( l 5 0) 5 1.

Inserting the equation for dW11/d l into the equation for dW21/d l and

similarly the one for dW22/d l into that for dW12/d l , one gets

d2W11

d l 2 5 {R2 2 [Q, P] 1 ( l [Q, P] 2 P)2}W11

d2W22

d l 2 5 {R2 1 [Q, P] 1 ( l [Q, P] 2 P)2}W22 (47)

After the introduction of the parameter

u 5
R2

2[Q, P]
(48)

and the change of the variable y 5 ( l [Q, P] 2 P) ! 2/[Q, P], equations

(47) become

d 2W11

dy2 5 H y2

4
1 u 2

1

2 J W11(y)

d 2W22

dy2 5 H y2

4
1 u 1

1

2 J W22(y) (49)

with the initial conditions W11( l 5 0) 5 W22( l 5 0) 5 1 and

dW11

dy Z l 5 0

5 2
dW22

dy Z l 5 0

5
P

2 ! 2

[Q, P]
(50)

The solution of equations (49) is a linear combination of parabolic cylinder

functions. The total operator 8Ä (t) is given by

8Ä (t) 5 exp {A} 1 W11 W12

W21 W22 2 (51)
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It remains to cancel the initial unitary transformation 2(t) in equation (40)

to obtain the exact expression for the time evolution operator:

8(t) 5 2 2 1(t)8Ä (t)2(0) 5 exp{A} 2 2 1(t)W(t)2(0) (52)

An instructive consistency check is to turn off the external interaction by
setting u to zero. In this case the stable two-level system should be recovered.

u 5 0 implies immediately

8(t) 5 exp { 2 it*}} exp{ 2 it9} (53)

as to be expected. The first term describes the free motion of the system,

and the second term contains the internal transitions. It is also possible to

derive an expansion for small u . But the result is then difficult to understand

since it contains various combinations of error functions.
In this paper we have analyzed the dynamical evolution of unstable

systems under the influence of external interactions. A generalization of the

complex spectral theory has been proposed to account for these unstable

open systems. The results of the coupled dynamics of the internal transitions

and the center-of-mass motion have been worked out with the algebraic

expansion of the time evolution operator.
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